Cleaning patch-clamp pipettes for immediate reuse

نویسندگان

  • I. Kolb
  • W. A. Stoy
  • E. B. Rousseau
  • O. A. Moody
  • A. Jenkins
  • C. R. Forest
چکیده

Patch-clamp recording has enabled single-cell electrical, morphological and genetic studies at unparalleled resolution. Yet it remains a laborious and low-throughput technique, making it largely impractical for large-scale measurements such as cell type and connectivity characterization of neurons in the brain. Specifically, the technique is critically limited by the ubiquitous practice of manually replacing patch-clamp pipettes after each recording. To circumvent this limitation, we developed a simple, fast, and automated method for cleaning glass pipette electrodes that enables their reuse within one minute. By immersing pipette tips into Alconox, a commercially-available detergent, followed by rinsing, we were able to reuse pipettes 10 times with no degradation in signal fidelity, in experimental preparations ranging from human embryonic kidney cells to neurons in culture, slices, and in vivo. Undetectable trace amounts of Alconox remaining in the pipette after cleaning did not affect ion channel pharmacology. We demonstrate the utility of pipette cleaning by developing the first robot to perform sequential patch-clamp recordings in cell culture and in vivo without a human operator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pressure polishing: a method for re-shaping patch pipettes during fire polishing.

The resolution of patch-clamp recordings is limited by the geometrical and electrical properties of patch pipettes. The ideal whole-cell patch pipette has a blunt, cone-shaped tip and a low resistance. The best glasses for making patch pipettes are low noise, low capacitance glasses such as borosilicate and aluminasilicate glasses. Regrettably, nearly all borosilicate glasses form pipettes with...

متن کامل

Pressure-polishing pipettes for improved patch-clamp recording.

Pressure-polishing is a method for shaping glass pipettes for patch-clamp recording. We first developed this method for fabricating pipettes suitable for recording from small (<3 m) neuronal cell bodies. The basic principal is similar to glass-blowing and combines air pressure and heat to modify the shape of patch pipettes prepared by a conventional micropipette puller. It can be applied to so-...

متن کامل

Making patch-pipettes and sharp electrodes with a programmable puller.

Glass microelectrodes (also called pipettes) have been a workhorse of electrophysiology for decades. Today, such pipettes are made from glass capillaries using a programmable puller. Such instruments heat the capillary using either a metal filament or a laser and draw out the glass using gravity, a motor or both. Pipettes for patch-clamp recording are formed using only heat and gravity, while s...

متن کامل

Fluorescent pipettes for optically targeted patch-clamp recordings

Targeted patch-clamp recordings are a promising technique that can directly address the physiological properties of a specific neuron embedded in a neuronal network. Typically, neurons are visualized through fluorescent dyes or fluorescent proteins with fluorescence microscopy. After switching to transmitted light microscopy, neurons of interest are re-identified and visually approached in situ...

متن کامل

ATP masks stretch activation of epithelial sodium channels in A6 distal nephron cells.

The mechanosensitivity of the epithelial sodium channel (ENaC) is controversial. Using cell-attached patch-clamp techniques, we found that mechanical stretch stimulated ENaC in A6 distal nephron cells in only three of nine cell-attached patches. However, stretch consistently activated ENaC after apical ATP was scavenged with apical hexokinase plus glucose or after P(2) receptors in the patch we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016